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The analysis of wave propagation in periodic elastic structures,

i.e., structures in which the elastic constants of the material vary

in a periodic manner, is of great interest due to the presence of passing

and stopping frequency bands in such structures. While such an analysis

is in general quite complicated, closed form solutions have recently

been obtained for a number of simpler problems. It is the purpose of this

note to discuss an alternative approach to such problems which may be of

some value in gaining physical insight into the properties of the solu-

tion and in qualitatively “sketching” the frequency spectrum with reduced

effort.

One common physical case studied so far is that of torsional

elastic wave propagation in a bi—element composite circular cylinder,

either solid, reference (1], or hollow, reference [2]. The outer (and

inner, if present) boundaries are taken as stress free. The prismatic

cylinder is assumed to be infinite in length, jzl < ~~ , and consists of

two homogeneous elements, comprising region I of length i, density p

and shear modulus ~ and region II of length £ ‘, density p ’ and shear

modulus ii’, repeated periodically in the axial (z) direction with a unit

cell size d (
~ + £‘). Such a problem has only a single displacement com-

ponent, U0
, independent of the 0 coordinate in a cylindrical coordinate

system (r,0,z). This displacement component satisfies a wave equation

with phase speed c (~/~)L’2 and c’ (~i t/p I)
1 h’2 in regions I and II

respectively. We choose the z coordinate positive to the right and assume

a time harmonic dependence proportional to exp(—iwt), where w is the ang-

ular frequency in radians per unit of time.

In this simple example, the governing field equation readily separates

in (r,z) to give tangential component of displacement in the form:

L _ _  
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(1) (a) Region I, 0 < z < 2.:

U~ — [A sin (Az/2.) + B cos (Az/P.)] Z1(i r/a)

(b) Region II, — P. ’ < z < 0:

= (A’ sin (A’ z/L ’) + B cos (A ’z/L ’)]  Z11(K ’r/a) exp (—iwt ) .

We take the outer radius of the cylinder to be a , the inner radius

(if one exists) b , the half thickness h = (a—b)12 and ~ = w/w 5 where

,rc/2h is the lowest thickness shear frequency of an infinite, iso-

tropic, homogeneous plate of half thickness, h, mass density, p , and shear

modulus , ii. We have condensed the notation (which corresponds to (1]

and [2]) by introducing K E ITka/2h, K t E nk’a/2h , A ir~ P./2h, A ’

The radial solutions, Z, are given by

(2) Z1 (2/, ) J
1(Kr/a) 

,~2 >

(2/, ) 11(Kr/a)  2 
< o

— n a  K 2 — O

for the solid cylinder and

(3) — (2/K) J1(Kr/a) — (inc/2) DY1(Kr/a) K
2 

,~~ 0

— (2/K) 11(Kr/a) + K D K1 (Kn/a )  K 0

r/a + Da/r K

for the hollow cylinder with similar equations for in terms of K t

and D’ and where

- .  -—-- 
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(4) (LK/a)2 + A2 - (Lw/c)2 or k2 + ~
2 

-

+ x ’ 2 (t’w/c’)2 or k’2 + ~,2 —

The radial boundary conditions require zero shear stress, trO 
—

~~~(U0/r]/~r,on the outer surface r=a and either zero shear stress on

the inner surface n—b f or the hollow cylinder or a bounded displacement

at the origin 0+ for the solid cylinder (this was already implied in

the form of Z used above for the solid cylinder).

For the solid cylinder, the radial boundary condition requires

— 0,

for ~
2 
~ 0 and has no roots for K

2 
< 0. Roots of this transcendental

equation as given in [33 are 0, K
1 

5.1356, K
2 

8.4172,
/

etc.

For the hollow cylinder, the boundary conditions require

(6) ,1
2
(K) Y2(Kt) 

— J
2
(ict) Y

2
(K) = 0, t E b/a

= (irK2/4) Y2(K)1J 2 (K) ,

for K
2 

> 0 and no solution for K
2 

< 0. Roots of this transcendental

equation must be calculated as a function of t. For t — 1/3, K
1 

—

1.1892, K
2 

2.1160, K
3 

3.0811, etc., and for t = 1/2, K
1 

= 1.08446,

— 2.04602, K
3 

— 3.03122, etc. Similar results hold for ic’.

The remaining boundary conditions apply to surfaces of constant z.

The origin and direction of the z axis are arbitrary; we choose z—0

at the interface between regions II and I and first require continuity of

and t
0 

— u
~
Ue/~

z. This leads to the two conditions

~~~~~~~~~~~~~~~~~~~~~ i~~::i~~~~~. —~~ -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~



(7) VA — v ’A’ , B — B’,

where

V ~zA/L and V t

The remaining interfacial condition is a quasi—peniodicity condition

which, by Floquet’s theorem, requires the wave amplitude to have the same

periodic structure as that of the elastic medium, in order to have

a solution

U
0
(r ,z,t) — w(r ,z) exp j  (yz — wt) ,

where w is periodic in z with peniodicity d , i.e., w(r ,z+d ) — w(r ,z)

and y is the Floquet’s wave number corresponding t” the phase shift ,

which has to be determined from the solution of the problem.

This leads to the quasi—periodic conditions

(a) U~ (r ,L,t) = U~~ (r ,—L’,t) exp iyd ,

~8)
(b) t~~0 

(r ,9.,t) — t~~~ (r ,—L ’,t) exp i’yd,

where for convenience we have dropped explicit time harmonic dependence

exp(—iwt). Equation (8) implies Z’(Kr/a) Z~~(K ’n/a) , i.e., K K t
;

and

(a) A sin A + B cos A (—A’ sin A ’ + B’ cos A ’] exp iyd,

(9)

(b) vIA cos A — B sin A) — v ’[A ’ co~ A’ + B’ sin A ’ l  exp iyd.

L
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While the problem is completely formulated at this point and has

indeed been solved in this form in references (1) and [2], we, however,

introduce slight modification in the variables of the problem.

We introduce the “intenfacia l. elastic parameter”, Q, as the ratio

of stress to displacement at an interface. Cleanly Q is piecewise

continuous throughout the rod. Consider first E Q0 defined as

(10) Q — t
0 
(0)/u8(0) — vA/B — v’A ’/B’.

Equations (9a) and (9b) may then be rewritten as

(a) B(Q
0 
sin A + v cos A) — B’(v/v’) (—Q

0 
sin A’ + v ’ cos A’] exp(iyd),

(11)

(b) B(Q cos A — V sin y ) =B ’[Q cos A’ + v ’ sin A ’] exp (iyd).

Consistency of these two homogeneous equations requires that the deter-

minant of the coefficients be zero. This leads us to the frequency

equation

Q2 (v ’ sin A cos A’ + v sin A ’ cos A] + Q (v ’2 — v
2
) sin A sin A’

(12) + vu ’ (v ’ sin A’ cos A + v sin A cos A’) — 0, 0 < Q <

On the other hand , we may eliminate Q from Eq. (11) by using Eq. (10)

and then obtain the usual dispersion equation.

(13)

[exp(iyd)]
2 + ((v/v ’ -

~ v ’/v) sin A sin A’ — 2 cos A cos A’ ] exp(i’yd) + 1 — 0 ,

____ 

-
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which relates Floquet wave number y to the axial wave numbers A and A’ .

Clearly, the second order equation has two solutions whose product is

unity and whose sum is

(14) cos yd — cog A cos A’ -~4 r +~ —) sin A sin A’ .

If we examine the completely homogeneous case , £ = P.’ , ~i =

p p ’, ~ ~~‘ and v = v ’, we get the solutions y ± (ir/d) ((L/h ± 2n ),

n 0,1,2 On the extended zone scheme we select n = 0, and therefore

the two values for y = ± ,r~ /2h = ± A/P.  are real and simply represent

the two directions in which torsional waves can propagate with no change

in amplitude. This is best seen by examining the form of the z dependence

in the tangential component of displacement

U
0 

— B[(A / B) sin(Az/P.) + cos(Az/L)] Z(Kr/a),

where, from equation (10) it can easily be shown that

A/B — Q / v  = ±i.

Hence, as expected

U0 
— B(cos(Xz/2.) ± i sin(Az/P.)] Z(Kr/a),

— B exp(±iAz/L) Z(,r/a),

and represents the two directions in which the torsional wave can propagate

without change of form.

_ _ _ _ _ _ _
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While there may be no general advantage in calculating Q for a given

fl and then calculating y etc., there are some special circumstances where

the introduction of Q
0 
is useful. Consider first the limiting cases when

tends to 0 or , corresponding to zero stress or zero displacement,

respectively, at z=0. The former, Q
0
0 leads to (if cos A and cos A’

are non—zero)

(a) v t a nA + v ’ tan A ’ = O , v,v ’~~~O

~b) cos yd — 4 (cos A’/cos A + cos A/cos A’),
(15)

(c) U~ = B cos (Az/P.) Z(Kr/a),

Cd) U~
’ = B cos (X’z/L ’) Z(Kr/a).

Similarly, for Q
0 

= °° , we have (if sin A and sin A’ are non—zero)

(a) v cot A + v ’ cot A ’ — 0, v , v ’ # 0

(b) cos yd — 4 (cos A’/cos A + cos A/cos A’),
(16)

Cc) U~ A sin (Az/& ) Z(Kr/a) ,

(d) = A(v/v ’) sin(A ’z/L ’)  Z(Kr/a) .

These frequency equations for Q0 — 0 and ~~~, are not only simpler to solve

than the general set, they are formally of the same structure as the

frequency equations for the endpoints of the Brillouin zones which define

the passing and stopping bands. Equations at the zon e ends are obtained
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by setting exp(iyd) — ± 1 in equation (13) ; these are the cut—off points

where y changes from real to imaginary values. For exp (iyd) — + 1,

this has solutions with a period d at frequencies defined by

(a) v tan(A/2) + v ’ tan(A ’/2) = 0,

(17)

(b) V tan(A’/2) + v ’ tan (A/2 )  — 0,

and for exp (iyd) = —1, it has solutions of period 2d at frequencies

def ined by

(a) v tan(A/2) — v ’ cot (A ’/2) = 0,

v cot(A/2) — v ’ tan(A’/2) = 0.

We thus see that the wave numbers satisfying equation (15(a)) are

one—half that satisfying equation (17(4).); that for equation (16(a)) are

one—half the wave numbers satisfying equation (17(b)).

It may be pointed out that Q satisfies a quadratic equation , and

for a fixed K and given values of (~ ,y) ,  there are always two values of Q .

Thus

(18a) QO.) 
— 0; Q (2) 

= v tan A = —v ’ tan A’ ,

are the two roots of Eq.. (12) in the presence of the constraining equa—

tion (15a). The displacement field in the second case is

U~ — A d c  A cos A (z/L — 1) Z(Kr/a),

(l9a)
—A’ csc A ’ cos A’ ( z /L ’ + 1) Z(Kr/a).

_ _ _ _ _  _ _ _ _ _
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Similarly

(l8b) Q(l) — 
~ — ~ cot A = v ’ cot A ’,

are the two roots of the same equation in the presence of the constraining

equation (16a). The displacement field in the second case is

— A sec A sin A(z/2. — 1) Z(Kr/a),

(19b )
— A’ sec A’ sin A ’(z/ P . ’ + 1) Z(Kr/a).

In each of these four cases the Floquet number y is governed by the same

equation (l5a).

These “second” solutions correspond to the same problem with the z

• origin shifted by one segment, e.g. by P.. For example , the solution for

Q
(~~ — 0 corresponds to a zero shear stress at z equal to zero while the

“second” solution , QQ
(2) 

= v tan A , corresponds to a zero shear stress

at z — P., etc.

S 

.~~~~~~~~
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The equation (15b — l6b) can be rewritten as

sin(yd/2) = ± ((cos A/cos A’)
1
~
’2 

— (cos A’/cos A)1”2) ,

(20)
cos(yd/2) = ± 4 ((cos A/cos A ’)~~

’2 + (cos A’/cos A) 1”2 ) ,

and therefore we see that at the end points of the Brillouin zones

cos A’ — cos A — 0 when yd = 0, 2n , 4t , . . -

(21)

cos A’ + c o s A = O  when yd = n , 3r , 5r,

Thus on the left end of the zone

(22a) A’ = A ± ~~n, 
~e 

= 0, 2, 4, ...
and on the right end of the zone

(22b) A’ = A ± 
~o

tT
~ n0 

= 1, 3, 5,

Consider now the case when Q = 0. On the left end of the zone

cos A’ = cos A imply sin A ’ = sin A and therefore from Eq. (l5a)

(23) (v + v ’) tan A = 0.

Consequently, either Cv + v’) = 0, or sin A 0. Hence, either

(24) A — ±11ne/i( 1i / ;)(2
~
/L)  + 1], or A = mu , m 0, 1., 2 ,

Knowing A from this equation , we can now find A ’ from Eq. (22a). However ,

in the second case, in Eq. (22a) and m in Eq. (24)2) cannot both be

__ ——. -~~~~— ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~.— .~~~~~~ —.- 
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arbitrary since from Eq. (4)

(25) A’
2 

= (P.’/P.)
2
(c/c)

2 
A
2 

+ (L ’/a)2 K
2 ((c/c’) 2 - 1).

When = ~~~, we find from Eqs. (21)1 
and (16a) that

(v + ‘v ’) cot A = 0,

and therefore, either (v + v ’) = 0, or cos A = 0. Hence, in this case

either

(26) A ±,Tn / [ (1J/~i) (L’ / P.) + 1], or A = mt/2, m = i , 3, 5,

On the right end of the zone, we have simply to replace the integers 
~e

by n to obtain corresponding formulas for A and A ’ when Q
0 

= 0 or

Q
0

It is easy to see that in the interior of the Brillouin zone 0 < yd < it ,

yd is always complex for real values of A and A’ , A # A ’ . This follows

ininediately from the fact that Eq. (15b) can be rewritten as

(27) exp iyd = cos A/cos A ’.

We therefore conclude that when Q0 
0 (stress—free interface), or when

Q — (displacement—free interface) torsional waves cannot be propagated

in a prismatic cylinder with periodic structure and ar~ therefore damped

Out.

We now consider those values of Q whi’h lead to information concern-

ing frequencies in the passing band. From Eq. (12) we find that when

Q — ± i v ’

_ _ _  
.
~~- --- -~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ,-~~~~-.
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(28) v ’(v 2 
— v’

2) sin A exp (±iA’) = 0,

and when Q
0 

±iv

(29) v(v2 — v ’
2 ) sin V exp (±iA) = 0.

We assume that V~~~v , v~~~0 and v’~~~0. Then f o r Q = ± i v , sin A = O

and in accordance with Eq. (14) cos yd = ±cos A’ . Therefore

A — r~r , n = 0, 1, 2,

(30)
yd = A ’± mit , m = 0, 1, 2,

It therefore follows from Eq. (4) that

+ (2~h/P.)
2

(31)

(c/ c’)2~
2 = + (2h/ir L’)2(yd ± mr) 2 .

For every value of radial wave number k, these two equations determine a

unique value of ~2 and y. Plotting ~2 versus yd , the first equation gives us

lines of constant c~ for every given k and for different values of n.

The second equation gives us a series of hyperbolas (or straight lines when

k = 0). Starting with the cut—off frequencies when yd = 0, the real

branches of the dispersion curves lie between the bounds defined by

Eq. (31). The dispersion curve will cross the bcunds only at their points

of intersection , where Q = ± iv ’ .

Another independent set of bounds can similarly be found when

Q = ± iv, leading to sin A’ = 0. In this case the two equations of the

bounds are 

“
,. ,- -~~~~~~~~ -- -~~~~~~-—-- ..- - .- ~~~~~~~— —.-~~~—.__—~~~~~ - - — .~~—-—
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(c/c ’)
2
~
2 

— k2 + (2rih/P.’)2,

-

Since the cut—off frequencies at y = 0 and yd — it are available from

the roots of Eqs. (17, 18) , the knowledge of additional intersection points

inside the Brillouin zone, provides us with sufficient information to

sketch the dispersion curve qualitatively. The use of interfacial parameter

Q therefore provides us with a scheme for r. qualitative solution, which

may be valuable in more complex problems .

Physically , these two cases correspond to A ’ = iB’ and A = lB

respectively. These conditions in turn lead to the requirement that the

ratio of shear stress, r 0
(z) , to displacement , U0(z), be uniform

throughout region II for Q0 = iv and throughout region I for Q iv ’,

i.e., T
~0
11(z)/U

0
11(z) = T

~0
”(0)/U0

1(O) respectively.

The bounding curves for Q = iv , and iv’, are shown in Fig. 1 along

with the actual dispersion curve as calculated in ref. [1] for the lowest

branch, IC = 0, for a solid cylinder. The parameters used are ~i/~i’ 1/40 ,

P./a 3/5, L’/a = 3, c/c ’ = 1/4. For these parameters, the bounding

curves for Q = iv ’ are ~ = 5nj 3; ~~~~
- = ~7 + ~ and for Q 

= lv are

= 4n/3; = ~ + r~.it 5

The scale for ~2 in reference [1] is different from that used in

this paper by a factor of 2 since w there was nondimensionalized with

respect to the lowest thickness shear mode frequency of an infinite plate

of half width a while here a half width h, equal to a/2 for a solid 

~~~~~~ -~~~~~—-.- - -~~~~~~ —~~~~~ -~~~~~ -~~~~~~~~~~~~~~~~ ——
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cylinder, is used. Thus values from reference (1) used for comparison

here must be divided by 2. Thus, the cut off frequencies

are at ~ — 0, 0.290, 1.168, 1.359, 1.628, 1.872, 2.620, 2.772, etc.

The intersection points of the bounding curves lie for Q = iv at (1.8,

1.33) for i~ = 1, m 1 and at (3.6, 2.67) for n = 2, m = 2 while for

Q = iv’, the first point lies at (2.25, 1.67) for n = 1, m = 1 and the

others lie beyond the range of calculated values. The complex roots

lie at (1 + 0.1771, 0.764) and (1 + O.729i, 0.679) for Q = 0,

respectively on the first complex branch , at (2 + 0.055i, 1.361) and

(2 + 0.080i, 1.1624) for Q = 0, respectively on the second branch, etc.

The effort in calculating all of these bounds and solution points

and the end points of the Brillouin zones is considerably less than that

involved in determining the complete dispersion spectrum , even for this

simple problem, yet these few calculations are sufficient for a reasonably

accurate sketch. It is anticipated that this reduction in effort will

apply to more general problems as well.

~
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